UIRGV

The University of Texas Rio Grande Valley
College of Engineering and Computer Science
Department of Electrical & Computer Engineering

ECEE 3225-03 Course name
Fall 2024

Lab Report 5

by
Jordan Lara
Enrigue Casiano

Jesay Garcia

Instructor: Mr. Carlos Rodriguez Betancourth

October 30, 2024

Contents

l. INTRODUCTION .ttt ettt ettt e e e e ettt e e e e e e e e e e e e s aa bbb eeee e e s annbeeeeeeeeaannbebeeeesesannrnneeaasesannn 3
PUrPOSE Of the EXPEIIMENT: ...oiii it e e st e e e st e e e s bee e e esatee e e snteeessnbeeeenarenas 3

L IV oY1 i g T 13 PRSP 3
Summary of the Experiment's Content and ObjJeCHIVES:c..eeeiriiiiiciee et e 4

[I. DESCRIPTION OF MAIN CONCEPTS ...ttt ettt ettt e e ettt e e e s et e e e e e sabee e e e e e e samnnreeeeeeeanan 5
I, DEVELOPIMENT ...ttt ettt ettt e tereeeeeteeeeeeaeaeaeaaeaaeaeasasesssasessesssssasasasnsassnnnnnnnnnnnnnnnnn 11
Materials aNd METNOASoiiieiieiee ettt e b e b e e e s 11
MLaEEITAIS ..ttt e s s s e s e b s r e s s re e e sareesaree s 11

e ool =T [PP PTO TR 11
DF L= AN o =1 A2 SRR PURURRRRRIOt 22
IV, CONCLUSIONSottt ettt ettt ettt et ettt et e b et et et e e bt e b e e b e e bt e bt e b e et e enbeebeeabeebeenreenneen 23
) =4 0 1= L0 =3P PP 24

F N 0= g o L= I | TP TR 26

|. INTRODUCTION

Purpose of the Experiment:

This experiment in ELEE 3225 Electrical Engineering Laboratory | seeks to thoroughly
investigate the processes of digital-to-analog and analog-to-digital conversion. The
primary objectives are to construct, test, and analyze the performance of both DACs
and ADCs using various methods, such as resistor ladder networks and successive
approximation techniques. Through these exercises, students will gain hands-on
experience with signal conversion and learn how to program a microcontroller to
approximate waveforms digitally. The overarching question addressed by this lab is:
how can digital signals be accurately translated to analog forms, and conversely, how
can analog signals be effectively represented digitally in an engineering context?

Background Information:

Digital-to-Analog Converters (DACs) and Analog-to-Digital Converters (ADCs) serve as
critical interfaces between digital systems and the analog world. DACs convert binary
data into analog voltage or current outputs, facilitating applications like audio output,
video display, and signal modulation. A widely used implementation of DACs involves a
resistor ladder network, specifically an R/2R ladder, which can create analog voltage
outputs that are linearly proportional to the digital input code. For example, an 8-bit DAC
receiving a digital input ranging from 0 to 255 will output a proportional voltage between
0 and 5V, where the resolution is determined by the number of bits in the digital input,
resulting in incremental voltage steps (for an 8-bit DAC with 5V full-scale output, each
step is approximately 0.0196V). ADCs perform the reverse operation: they take an
analog voltage and convert it into a digital binary value. This lab introduces the
successive approximation ADC, a type commonly found in microcontrollers due to its
speed and efficiency. By utilizing a binary search method, successive approximation
achieves a digital representation of an analog input within a set number of steps equal
to the bit resolution of the converter (e.g., 10 steps for a 10-bit ADC). Additionally, the
ADC's characteristics, such as resolution, accuracy, and speed, determine how well it
can sample and convert rapidly changing analog signals into accurate digital
representations. The PIC16F1517 microcontroller, used in this lab, has an internal 10-
bit successive approximation ADC. This type of ADC, due to its design, is optimized for
accuracy and quick conversion times, making it suitable for applications where high
sampling rates and efficient data conversion are necessary. By configuring and testing
this ADC, students will explore the internal registers responsible for ADC functionality,
such as ANSEL, TRIS, ADCONO, and ADCON1, and measure performance through
observing output on LEDSs.

Hypothesis:

If the DAC and ADC are properly configured, constructed, and tested according to the
principles of digital and analog conversion, the outputs should exhibit consistent
linearity, resolution, and monotonicity in response to varied digital or analog inputs. This
hypothesis assumes that accurate resistor values (within 1% tolerance) in the R/2R

ladder will produce predictable voltage outputs for each digital input code in the DAC,
and that the internal ADC of the PIC16F1517 will correctly approximate analog voltages
according to its successive approximation process. Deviations in output linearity and
accuracy are expected to arise from inherent component tolerances and resolution
limits.

Summary of the Experiment's Content and Objectives:

This lab encompasses several stages, each aimed at reinforcing understanding of DAC
and ADC fundamentals. First, students will manually construct a 4-bit DAC using an
R/2R resistor ladder network to directly test output responses for a set of digital inputs.
Next, they will connect this DAC to the microcontroller’s output port and program it to
generate a staircase waveform, providing insight into DAC waveform synthesis
capabilities. Following this, students will expand the circuit to an 8-bit DAC and program
the microcontroller to create a smooth ramp waveform, allowing further exploration of
waveform approximation. In parallel, students will work with the PIC16F1517’s internal
ADC, configuring it to continuously sample analog inputs and display results on LEDs,
enabling them to interpret how digital signals represent varying analog levels. For a final
task, students will engage in one of two projects: synthesizing a specific waveform
through the 8-bit DAC or constructing and testing a successive approximation ADC
circuit, which will further illuminate the applications and limitations of DACs and ADCs in
real-world signal processing. This lab builds a robust framework for comprehending the
intricacies of signal conversion in electronic systems, equipping students with the skills
needed to analyze performance metrics like resolution, offset error, and linearity in
DACs and ADCs, which are integral to countless engineering applications. Through
practical testing and theoretical grounding, students are expected to demonstrate a
thorough understanding of DAC and ADC functionality, bridging the digital and analog
domains crucial to modern electronics.

DESCRIPTION OF MAIN CONCEPTS

Key Terms and Definitions:

Microcontroller:

A microcontroller is a compact integrated circuit designed to govern a specific
operation in an embedded system. Unlike microprocessors, microcontrollers
include internal memory, timers, analog-to-digital converters, and input/output
peripherals, making them ideal for control-oriented tasks.

RAM Microprocessor

AD/Converter
Program memory

110 peripherals

Oscillator

Microcontroller

Figure 1: Microcontroller

PIC16F1517 Microcontroller:

The PIC16F1517 is an 8-bit microcontroller developed by Microchip, featuring
8192 words of flash memory, 512 bytes of RAM, and several specialized
functions such as digital I/O, analog-to-digital conversion, and timers. It supports

clock frequencies up to 20 MHz.

MCLRNPP —= [

RAO/ANO «—s[]

RA1/AN1 <—[]
RA2/AN2/VREF-/CVREF <«— []
RA3/AN3/VREF+ <— []
RA4/TOCKI/C10UT <— []
RA5/AN4/SS/C20UT <— []
REO/RD/AN5 <—[]
RE1/WR/AN6 <— [
RE2/CS/AN7 <— []

VDD —» [

Vss — =[]

OSC1/CLKI —]
OSC2/CLKO =—[]
RCO/T10SO/T1CKI e—s[]
RC1/T10SI/CCP2 <[]
RC2/CCP1 <—[]
RC3/SCK/SCL <— [
RDO/PSP0 <— []
RD1/PSP1 =— []

W NG WN =

w

10
11
12
13
14
15
16
17
18
19
20

\-/)40

PIC16F874A/877A

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

] <— RB7/PGD
[1 «—= RBB/PGC
] <— RB5

[] =— RB4

[] -<—» RB3/PGM
[] <= RB2

] =—= RB1

] -— RBO/INT

] =—— VDD

'] -—— V/ss

] «+—= RD7/PSP7
[] =—» RD6/PSP6
[] < RD5/PSP5
[] <= RD4/PSP4
] «——s RC7/RX/DT
[] == RCB/TX/CK
[] «—» RC5/SDO

] «<—» RC4/SDI/SDA

[] <—» RD3/PSP3
[] =<— RD2/PSP2

Figure 2: PIC16F1517

Figure 3: PIC16F1517

Assembly Language:

Assembly language is a low-level programming language where each instruction

corresponds closely to the machine language of a computer or microcontroller. It

provides fine control over hardware, making it suitable for time-critical operations.

An Assembly Language Program Example

; Program to multiply a number by the constant 6

"ORIG %3050

LD
LD
AND

R1l, SIX ; Constant 6
R2, NUMBER ; Number
R3, R3, #0 ; Clear R3

The product.

The multiply loop

AGAIN ADD
ADD
BRp
HALT

NUMBER .BLKW

SIX .FILL
.END

Symbol Table:

R3, R3, R2 ; Accumulate product
Rl, Rl, #-1 ; Dec counter
AGAIN

3 ; Value of Number
x0006

Symbol Address

AGAIN x3053
NUMBER x3057
SIX x305A

Figure 4. Assembly Language

C Programming Language:

| clear R3

l

add R3 to R2

}

decrement R1

C is a high-level programming language used to write more complex programs

that are compiled into machine code. It is widely used in embedded systems due

to its efficiency and control over hardware.

FOSC = INTOSC
WDTE = OFF
config MCLRE = ON
$pragma config CP = OFF
main ()

OSCCON = 0Ob01111010;
ANSELC = 0b00000000;
TRISC = 0ObOGOO

PORTC = 0ObO0O0O0O00O000;

while (1)

PORTC = 0b00000100; BC2 high

ROF(): NOR(): NOR(); NOE(): NOB():

NOEB(): NOE(): ROE(): NOE(): NOER():
F(): NOP(): ROP():; NOE(): NOE():

B():
PORTC =

0 ; NOB(): NOE():
0 BOB(): NOE():

B(): NOB(); HOP():
(): ; NOB(): HOB():
0: NOH() ; NOE():
)z HOR(): NOR():

E(): NOR():; HOR(): BOE():

Figure 5: C Programming Language

e Potentiometer:

A potentiometer is a three-terminal variable resistor that allows for adjustable
resistance within a circuit. By rotating its wiper, it varies the resistance between
two points, making it useful for calibration, tuning, or as a voltage divider.
Potentiometers are commonly used to control audio levels, brightness, or in
applications requiring precise resistance adjustments.

Figure 6: C Potentiometer

e LED (Light-Emitting Diode):

An LED is a semiconductor light source that emits light when an electric current
passes through it. Unlike traditional light bulbs, LEDs are energy-efficient,
durable, and come in various colors. They are widely used as indicators in

electronic devices, displays, and lighting due to their low power consumption and
longevity.

Figure 7: LEDs

- Breadboard:

A breadboard is a solderless device used to build and test electronic circuits. In
this lab, it is used to connect the microcontroller, motor, and other components
without permanent connections.

i i

Figure 8: Breadboard

Theoretical Framework:

The principles governing DACs and ADCs are rooted in the conversion of continuous
analog signals to discrete digital signals, a fundamental aspect of digital electronics.
DACs operate by converting binary numbers into a proportional analog output. The
R/2R ladder network employed in this lab is one of the simplest and most reliable
methods for binary-weighted DACs, ensuring that each bit of the binary input code
impacts the output voltage according to its binary significance. The use of resistors in
the ratio R and 2R creates a scalable network, where each additional input bit adds
another stage to the network.

Conversely, ADCs work by interpreting an analog signal and outputting its closest digital
representation. The successive approximation method used in this lab involves a
comparator and a DAC within the ADC. The comparator checks whether the DAC
output (based on a digital guess) is higher or lower than the analog input, adjusting
each guess through a binary search until it closely matches the input voltage. This
method is efficient and enables the ADC to complete the conversion in a fixed number
of steps, equal to the bit depth of the ADC.

In summary, this lab’s approach to building and testing DACs and ADCs aims to provide
a detailed exploration of how digital and analog signals are converted and interpreted.
By analyzing the performance of DACs and ADCs, students gain practical knowledge

on the accuracy, resolution, and limitations of these converters, essential in designing
systems that require precise signal control and interpretation.

. DEVELOPMENT

Materials and Methods

Materials:

For this experiment, we gathered the following equipment and components: a dual-trace
oscilloscope, a digital multimeter, a logic analyzer (though it was optional), a power
supply providing 5V, +12V, and -12V outputs, and a PIC microcontroller programmer
(PicKit4). We also used a breadboard and assorted test cables to set up our circuits.
For the actual components, we worked with a PIC16F1517 microcontroller, several
resistors (ensuring they had 1% tolerance for accuracy), and a 0.1 pF capacitor.

Procedure:
PART 1:

Building and Testing the 4-Bit DAC: We started by constructing a 4-bit digital-to-
analog converter (DAC) using an R/2R ladder network on our breadboard. We arranged
resistors with values R and 2R in the configuration required, following the lab’s
instructions. After setting up the network, we connected each bit (A, B, C, D) to the
voltage source, making sure A was the most significant bit (MSB) and D was the least
significant bit (LSB). We connected the output of the DAC to the oscilloscope, which
allowed us to monitor the voltage as we varied the binary inputs from 0000 to 1111. As
we changed the input code in each possible combination, we recorded the output
voltage corresponding to each input, noting any small deviations from theoretical values
due to component tolerances.

~ Lab
DA W a6 V=AY

AN
062U
100 [0-36% |V
010\ |i.oug|y
OO .25 |V

N
) >, ik 6
\J

4

SRR IR TR
S|t 000! .53
Q|1 00) 13136

V
v
V
A|l0) O [2-035 |V
oV [2.20UnV
C \Y
D v
v

v

1100 [2-50U3[V.

_Djtio) p.a180
[0]2.q201

TTTT o a3

Pagy 5.

Ao ot Woold be ow
oV ol %

yo\xnoa
PART 2:

Programming the Microcontroller to Drive the DAC: Next, we connected our 4-bit
DAC to a microcontroller output port, specifically PORTD, to automate the output
sequence. We wrote a program that would cycle through a binary count from 0 to 15,
which should produce a staircase waveform when viewed on the oscilloscope. After
loading the code and running it, we observed a clear 16-step staircase waveform on the
oscilloscope, confirming that the DAC worked as expected. We then decided to upgrade
the DAC to 8 bits by adding additional R and 2R stages to the ladder network. Once this
was done, we connected the 8-bit DAC to an 8-bit output port and modified our program

to count from 0O to 255. Observing the waveform on the oscilloscope, we saw a smooth
ramp function, which confirmed that the 8-bit DAC was performing as expected.

4-bit: Code and images

#include <xc.h>

/I Configuration bits (adjust these for compatibility)

#pragma config FOSC = INTOSC // Internal Oscillator

#pragma config WDTE = OFF // Watchdog Timer Enable (WDT disabled)
#pragma config PWRTE = OFF // Power-up Timer Enable (PWRT disabled)

#pragma config MCLRE = OFF // MCLR Pin Function Select (MCLR pin function is
digital input)

#pragma config CP = OFF // Program Memory Code Protection (disabled)
#pragma config BOREN = OFF // Brown-out Reset Enable (disabled)
#pragma config LVP = OFF /I Low-Voltage Programming Enable (disabled)
#define _XTAL_FREQ 4000000 // Define oscillator frequency
void main(void) {
/I Configure PORTB
TRISA = 0xFO; // Set RB0-RB3 as outputs, RB4-RB7 as inputs
PORTA = 0x00; // Clear PORTB initially
unsigned char count =0;
while(1) {
PORTA = (PORTA & 0xF0) | count; // Output count on RBO-RB3
__delay_us(10); // Delay to observe each count value

count = (count + 1) & OxOF; // Increment count with wrap-around after 15

150ct 2024

./ “40.0mv

m |
i
g

125kS/s

1.00ms
=" 0,000005

78S 1000C SERIES DIC \17! AL OS¢

ARCDE 2 FGHI 4
 Teltronix

8-bit: Code and Images
/I Configuration bits (adjust these for compatibility)

#include <xc.h>

#pragma config FOSC = INTOSC // Internal Oscillator
#pragma config WDTE = OFF /[Watchdog Timer Enable (WDT disabled)
#pragma config PWRTE = OFF // Power-up Timer Enable (PWRT disabled)

#pragma config MCLRE = OFF // MCLR Pin Function Select (MCLR pin function is
digital input)

#pragma config CP = OFF /I Flash Program Memory Code Protection (disabled)
#pragma config BOREN = OFF // Brown-out Reset Enable (disabled)
#pragma config LVP = OFF /I Low-Voltage Programming Enable (disabled)
#define _XTAL_FREQ 4000000 // Define oscillator frequency
void main(void) {

/I Configure PORTA as an 8-bit output for the DAC

TRISA = 0x00; // Set all bits of PORTA as outputs

PORTA = 0x00; /I Initialize PORTA to O

unsigned char count = 0;

while(1) {
PORTA = count; // Output the 8-bit count to PORTA
__delay_us(10); /I Small delay to control the rate of change in the ramp
count++; /I Increment count and wrap around after 255

}

SN SSSEL 1
I PaEas 2=

. BEssS =
e e g -
Saus! - :
Sanuas¥ e ens® -
Saet usaes oiats
H =44 A
s bt S

~\(F \ 5 \—— 1
T TS §E . ‘
R 2
: :
.
i o u.-!_.n"- $ =
e '-lnll“I' s | :
asns
-
-
-
b -il ERl
e
Rt
T
4
7] - ‘\lr..i l.
-

6255/s &R / 0.00v 05:33:50
2000 points <10Hz 230ct 2024

PART 3:

Configuring and Testing the ADC: Our next focus was on testing the analog-to-digital
converter (ADC) built into the PIC16F1517 microcontroller. We began by configuring the
ADC registers (ANSEL, TRIS, ADCONO, and ADCONL1) to set the correct analog input,
choose right justification for results, and use VDD as the reference voltage. We wrote a
simple program to sample an analog input voltage and display the digital output on a
row of LEDs, which allowed us to verify the conversion visually. To test the ADC’s
accuracy, we adjusted the analog input in 0.5V increments, noting the corresponding
output in binary. We also recorded the minimum input voltage needed to produce an all-
ones output on the ADC, finding it was slightly below the theoretical maximum of 5V.

ADC Code and images:

#include <xc.h>

/I Configuration bits

#pragma config FOSC = INTOSC // Internal Oscillator

#pragma config WDTE = OFF // Watchdog Timer Enable (WDT disabled)
#pragma config PWRTE = OFF // Power-up Timer Enable (PWRT disabled)
#pragma config MCLRE = OFF // MCLR Pin Function Select (MCLR pin function
is digital input)

#pragma config CP = OFF /l Program Memory Code Protection (disabled)
#pragma config BOREN = OFF // Brown-out Reset Enable (disabled)

#pragma config LVP = OFF /I Low-Voltage Programming Enable (disabled)

#define _XTAL_FREQ 4000000 // Define oscillator frequency

void setup_adc(void) {

}

TRISA =0x01; // Set RAO as input, rest as output
ANSELA =0x01; // Set RAO as analog, rest as digital

/Il Set up ADC:
ADCONO = 0b00000001; // Enable ADC, select ANO (RAOQ)
ADCON1 = 0b10000000; // Right justified, use VDD (5V) as reference

unsigned int read_adc(void) {

}

ADCONObits.GO =1; // Start ADC conversion
while(ADCONObits.GO); // Wait for conversion to complete
return ((ADRESH << 8) + ADRESL); // Return the 10-bit ADC result

void main(void) {

}

setup_adc();

TRISA = 0x01; // RAO as input, RA1 and RA2 as output for MSBs
TRISC = 0x00; // All PORTC as output for LSBs
ANSELC = 0x00; // All PORTC pins as digital

while(1) {
unsigned int adc_result = read_adc(); // Read ADC value from 0 to 1023

// Directly set PORTC to the LSBs (lower 8 bits) of the ADC result
PORTC = adc_result & OxFF;

Il Directly set RA1 and RA2 based on the 2 MSBs of the ADC result
RA1 = (adc_result & 0x100) ? 1 : O; // Check bit 8
RA2 = (adc_result & 0x200) ? 1: 0; // Check bit 9

/I Simple delay for stability
for(unsigned inti =0; i <500; i++) {
__delay_us(200);
}
}

PART 4:

Project Work — Waveform Synthesis: For the final part of our lab, we chose Project A,
which involved using our 8-bit DAC to synthesize a specific waveform. We programmed
the microcontroller to output a waveform pattern as assigned by our instructor, then
verified the result by observing it on the oscilloscope. Although the output closely
resembled the expected waveform, we noticed slight discrepancies, likely due to the
microcontroller’s limited processing speed and the inherent limitations in DAC
resolution.

Waveform Synthesis: Code and Images

#include <xc.h>
#include <math.h> // Include math library for sine calculations

/I Configuration bits

#pragma config FOSC = INTOSC // Internal Oscillator

#pragma config WDTE = OFF // Watchdog Timer Enable (WDT disabled)
#pragma config PWRTE = OFF // Power-up Timer Enable (PWRT disabled)
#pragma config MCLRE = OFF // MCLR Pin Function Select (MCLR pin function
is digital input)

#pragma config CP = OFF /l Program Memory Code Protection (disabled)
#pragma config BOREN = OFF // Brown-out Reset Enable (disabled)

#pragma config LVP = OFF /I Low-Voltage Programming Enable (disabled)

#define XTAL_FREQ 32000000 // Correct clock frequency in Hz (3.25 MHz)
#define NUM_POINTS 82 /I Number of points in one sine wave cycle

/l Sine wave array, generated dynamically based on the sine function
unsigned char sine_wave[NUM_POINTS];

unsigned char wave_index = 0;

void generate_sine_wave(void) {
for (inti=0; i < NUM_POINTS; i++) {
sine_waveJi] = (unsigned char)((127.5* (1 + sin(2 * M_PI1 *i / NUM_POINTYS))));
}

}

void setup_dac(void) {
I/l Configure PORTA as output for 8-bit DAC
TRISA = 0x00; // All PORTA as output
ANSELA =0x00; // Ensure PORTA is digital

}

void output_waveform(void) {
/I Output the current sine wave value to the DAC (PORTA)
PORTA =sine_wave[wave_index];

/l Increment wave_index to move to the next value
wave_index++;
if (wave_index >= NUM_POINTS) {
wave_index = 0; // Loop back to the beginning of the waveform
}
}

void main(void) {
setup_dac(); /I Setup DAC for output
generate_sine_wave(); // Generate sine wave values dynamically

while(1) {
output_waveform(); // Output waveform value to DAC

// Delay for 78us to maintain 50Hz frequency (adjusted for new clock
frequency)
/l__delay us(78); // Adjusted delay for 50Hz (78us per step)

}

ISRITVINnA ——

Tek Run Trig'd f 1 Sosnse Cursor

(222ms | 12: 38.2ms
[vi:lssv 1} V2: 2.00V
H
{

H !
H
H :
} .
Frequency E Frequency
H
Amplitude i Amplitude
H

(4,088 Mean

. [500mv CH2 - : 12.5kS/s EEH / 2.81v ' on Screen
2000 points 50.0000Hz 280ct 2024

Data Analysis
Analysis of 4-Bit DAC:

The measured output voltages for each binary input in our 4-bit DAC showed close
alignment with theoretical values, and the small deviations we noted were primarily due
to resistor tolerances. The offset and full-scale error were minimal, validating the
accuracy of our DAC within acceptable limits for a 4-bit resolution.

Analysis of 8-Bit DAC:

The 8-bit DAC performed as expected, with a step size of about 0.0196V. The ramp
waveform was smooth and consistent, though we observed slight variations that might
have been due to timing delays from the microcontroller or slight differences in resistor
values.

ADC Analysis:

The ADC accurately converted analog inputs to digital outputs, with small offset errors
appearing at the lower voltage levels, possibly due to slight inaccuracies in the ADC
configuration or inherent microcontroller limitations. The measured full-scale voltage,
slightly below 5V, could be due to minor variances in the reference voltage.

Project A (Waveform Synthesis):

When synthesizing the waveform using the 8-bit DAC, we achieved a pattern close to
the instructor’s assigned waveform, although there were slight discrepancies due to the
microcontroller's processing limitations. Despite this, the output was largely successful
and showed the DAC'’s ability to produce analog signals from programmed digital
values.

V. CONCLUSIONS

Summary of Findings:

In this experiment, we successfully completed Project A, synthesizing a stepped sine
waveform using the DAC on the PicKit4 microcontroller. By programming the
microcontroller to output sequential binary values, we created an analog sine wave
approximation observed on the oscilloscope. The 4-bit and 8-bit DAC configurations
provided expected voltage step changes for each binary input, and the ADC
configuration on the PIC16F1517 accurately converted analog inputs to digital outputs.

Interpretation:

The experiment demonstrated that the DAC could produce a reliable stepped
approximation of an analog waveform, illustrating its capacity to bridge digital
programming with analog output. The accuracy of the DAC’s output waveform aligned
well with the theoretical predictions, with minimal deviations due to component
tolerances. The ADC’s successive approximation method effectively captured varying
analog inputs as binary values, supporting the hypothesis that both DAC and ADC
would perform reliably with a well-designed setup. This successful waveform synthesis
confirmed the feasibility of using microcontroller-driven DACs for analog signal
generation in real-time applications, reinforcing the theoretical principles of digital-to-
analog and analog-to-digital conversion.

Limitations:

Some limitations emerged due to resistor tolerances in the R/2R ladder network, which
caused slight deviations from the expected output voltage values. Additionally, the
microcontroller's processing speed limited the waveform’s resolution and smoothness,
with minor delays evident in the stepped waveform approximation. ADC conversions
were subject to minor offset errors at lower voltage levels, likely from small variances in
the reference voltage and inherent limitations in the microcontroller's ADC configuration.

Suggestions for Future Research:

Future experiments could explore higher-resolution DAC and ADC implementations,
such as a 10-bit or 12-bit DAC, to increase waveform smoothness and accuracy.
Testing the DAC with more complex waveform shapes, such as triangular or sawtooth
waves, could further demonstrate the microcontroller’s versatility in analog signal
generation. Additionally, future research could focus on reducing timing delays through
improved programming techniques or utilizing higher-speed microcontrollers, enhancing
the DAC’s performance in real-time signal processing applications.

In conclusion, the experiment’s objectives were met, with successful DAC waveform
synthesis and ADC functionality demonstrating a clear connection between digital input
values and corresponding analog outputs. This hands-on experience with DAC and
ADC circuits provided valuable insights into the practical application of digital-to-analog
and analog-to-digital conversion theories.

Signatures

After the Lab
4-bit DAC Output Voltage vs Integer Input

3.0f Measured Output
=== Best Fit Line S~

25 B A

20 B ,/,

1.5' P

1.0¢ A

Analog Output Voltage (V)

05 B —

0.0 ¢
0 2 4 6 8 10 12 14
Integer Input

o Offset Voltage: Approximately 0 V (no significant offset).
Offset Voltage=Measured Output at Input 0—Predicted Output at Input 0

e Full Scale Voltage: 3.01 V (measured at the maximum integer input).
Full Scale Voltage=Measured Output at Maximum Integer Input

e Linearity (Maximum Deviation from Best Fit Line): Approximately 8.88x10-16
V, indicating an almost perfect linear fit with minimal deviation.
Linearity=max(IMeasured Output—Predicted Output|)

Digital Output (0-1023)

1

10-bit ADC Digital Output vs Analog Input Voltage

000 Measured Digital Output y
——- Best Fit Line //
/,,
/’,/
///
800 A
-
-
//,
//,
/,/
600 ,/’
//’
/’,’,
”~
//
= ”
400 e
”
/”
’/
,/
’/
200} _A
/,/
’/
,/
’/
~
ot~
0 1 2 3 4 5

Analog Input Voltage (V)

Offset Voltage: Approximately —0.13 V, indicating a slight offset at zero input.
Offset Voltage=Digital Output at 0V-Predicted Output at 0V

Full Scale Voltage: 1023 (reached at the maximum input voltage of 5V).

Full Scale Voltage=Digital Output at Maximum Input Voltage (5V)

Linearity (Maximum Deviation from Best Fit Line): Approximately 0.44,
suggesting a minimal deviation from ideal linearity.

Linearity=max(|Digital Output—Predicted Output|)

	I. INTRODUCTION
	Purpose of the Experiment:
	Hypothesis:
	Summary of the Experiment's Content and Objectives:

	II. DESCRIPTION OF MAIN CONCEPTS
	III. DEVELOPMENT
	Materials and Methods
	Materials:
	Procedure:
	PART 1:
	PART 2:
	PART 3:
	PART 4:

	Data Analysis

	IV. CONCLUSIONS
	Signatures
	After the Lab

